Standards and Guidelines
for the Accreditation of Educational Programs in Perfusion

Essentials/Standards initially adopted in 1980; revised in 1989, 1994, 2000, 2005, and 20-- by the:

American Academy of Cardiovascular Perfusion
American Association for Thoracic Surgery
American Board of Cardiovascular Perfusion
American Society of Extracorporeal Technology
Perfusion Program Directors’ Council
Society of Cardiovascular Anesthesiologists
Society of Thoracic Surgeons
Accreditation Committee – Perfusion Education
and
Commission on Accreditation of Allied Health Education Programs

The Commission on Accreditation of Allied Health Education Programs (CAAHEP) accredits programs upon the recommendation of the Accreditation Committee – Perfusion Education (AC-PE).

These accreditation Standards and Guidelines are the minimum standards of quality used in accrediting programs that prepare individuals to enter the Perfusion profession. Standards are the minimum requirements to which an accredited program is held accountable. Guidelines are descriptions, examples, or recommendations that elaborate on the Standards. Guidelines are not required, but can assist with interpretation of the Standards.

Standards are printed in regular typeface in outline form. Guidelines are printed in italic typeface in narrative form.

Preamble

The Commission on Accreditation of Allied Health Education Programs (CAAHEP), the Accreditation Committee-Perfusion Education, the American Academy of Cardiovascular Perfusion, the American Association for Thoracic Surgery, the American Board of Cardiovascular Perfusion, the American Society of Extracorporeal Technology, the Perfusion Program Directors’ Council, the Society of Cardiovascular Anesthesiologists, and the Society of Thoracic Surgeons cooperate to establish, maintain and promote appropriate standards of quality for educational programs in perfusion and to provide recognition for educational programs that meet or exceed the minimum standards outlined in these accreditation Standards and Guidelines. Lists of accredited programs are published for the information of students, employers, educational institutions and agencies, and the public.

These Standards and Guidelines are to be used for the development, evaluation, and self-analysis of perfusion programs. On-site review teams assist in the evaluation of a program’s relative compliance with the accreditation Standards.

Description of the Profession

A perfusionist is a skilled allied health professional trained and educated specifically as a member of an open-heart, surgical team responsible for the selection, setup, and operation of a mechanical device commonly referred to as the heart-lung machine. During open heart surgery, when the patient’s heart is immobilized and cannot function in a normal fashion while the operation is being performed, the patient’s blood is diverted and circulated outside the body through the heart-lung machine and returned again to the patient. In effect, the machine assumes the function of both the heart and lungs. The perfusionist is responsible for operating the machine during surgery, monitoring the altered circulatory process closely, taking appropriate corrective action when abnormal situations arise, and keeping both the surgeon and anesthesiologist fully informed. In addition to the operation of the heart-lung machine during surgery, perfusionists often function in supportive roles for other medical specialties in operating mechanical devices to assist in the conservation of
blood and blood products during surgery, and provide extended, long-term support of patients’ circulation outside of the operating room environment.

I. Sponsorship

A. Sponsoring Institution
A sponsoring institution must be at least one of the following:

1. A post-secondary academic institution accredited by an institutional accrediting agency that is recognized by the U.S. Department of Education, and authorized under applicable law or other acceptable authority to provide a post-secondary program, which awards a minimum of a certificate at the completion of the program.
2. A hospital, clinic or medical center accredited by a healthcare accrediting agency or equivalent that is recognized by the U.S. Department of Health and Human Services and authorized under applicable law or other acceptable authority to provide healthcare, which awards a minimum of a certificate at the completion of the program.
3. A branch of the U.S. Armed Forces which awards a minimum of a certificate at the completion of the program.
4. A foreign post-secondary academic institution acceptable to CAAHEP that is authorized under applicable law or other acceptable authority to provide a postsecondary program, which awards a minimum of a baccalaureate degree equivalent to a United States degree at the completion of the academic program.

B. Consortium Sponsor
1. A consortium sponsor is an entity consisting of two or more members that exists for the purpose of operating an educational program. In such instances, at least one of the members of the consortium must meet the requirements of a sponsoring institution as described in I.A.
2. The responsibilities of each member of the consortium must be clearly documented in a formal affiliation agreement or memorandum of understanding, which includes governance and lines of authority.

C. Responsibilities of Sponsor
1. The Sponsor must ensure that the provisions of these Standards are met.
2. The Sponsor must ensure that the graduates of the program have obtained or will obtain a baccalaureate degree upon completion of the program.

II. Program Goals

A. Program Goals and Outcomes
There must be a written statement of the program’s goals and learning domains consistent with and responsive to the demonstrated needs and expectations of the various communities of interest served by the educational program. The communities of interest that are served by the program must include, but are not limited to, students, graduates, faculty, sponsor administration, employers, physicians, and the public.

Program-specific statements of goals and learning domains provide the basis for program planning, implementation, and evaluation. Such goals and learning domains must be compatible with the mission of the sponsoring institution(s), the expectations of the communities of interest, and nationally accepted standards of roles and functions. Goals and learning domains are based upon the substantiated needs of health care providers and employers, and the educational needs of the students served by the educational program.

B. Appropriateness of Goals and Learning Domains
The program must regularly assess its goals and learning domains. Program personnel must identify and respond to changes in the needs and/or expectations of its communities of interest.
An advisory committee, which is representative of at least each of the communities of interest named in these Standards, must be designated and charged with the responsibility of meeting at least annually, to assist program and sponsor personnel in formulating and periodically revising appropriate goals and learning domains, monitoring needs and expectations, and ensuring program responsiveness to change.

C. Minimum Expectations
The program must have the following goal defining minimum expectations: “To prepare competent entry-level perfusionists in the cognitive (knowledge), psychomotor (skills), and affective (behavior) learning domains.”

Programs adopting educational goals beyond entry-level competence must clearly delineate this intent and provide evidence that all students have achieved the identified basic competencies prior to entry into the field.

Nothing in this Standard restricts programs from formulating goals beyond entry-level competence.

III. Resources

A. Type and Amount
Program resources must be sufficient to ensure the achievement of the program’s goals and outcomes. Resources must include, but are not limited to: faculty; clerical/support staff; curriculum; finances; offices; classroom, laboratory, and ancillary student facilities; clinical affiliates; equipment; supplies; computer resources; instructional reference materials; and faculty/staff continuing education.

B. Personnel
The sponsor must appoint sufficient faculty and staff with the necessary qualifications to perform the functions identified in documented job descriptions and to achieve the program’s stated goals and outcomes.

1. Program Director
 a. Responsibilities
 The program director must be responsible for the organization, administration, periodic review, continued development and general effectiveness of the program. The clinical assignment of the program director must allow adequate time for administrative and teaching responsibilities.

 b. Qualifications
 The program director must possess at a minimum, the following:
 (1) a baccalaureate degree;
 (2) five years of professional experience as a perfusionist;
 (3) two years of experience as an instructor in an accredited educational program in perfusion; and
 (4) proficiency in instructional methodology, curriculum design, program planning and counseling.

 The program director should hold an advanced degree.

2. Clinical Coordinator
 a. Responsibilities
 The clinical coordinator must be responsible for evaluating and assuring clinical education effectiveness including a schedule of regular contact with the clinical affiliates. Documentation of all contact must be maintained.

 The clinical coordinator must assist the program director and other program officials regarding perfusion education.

 Contact with clinical affiliates may include, but is not limited to, clinical visits, teleconferences, and written correspondence.
b. Qualifications
The clinical coordinator must possess at a minimum, the following:
(1) Current certification as a perfusionist;
(2) The clinical activity requirements as defined by the American Board of Cardiovascular Perfusion (ABCP) for recertification;
(3) Five years of professional experience as a perfusionist; and
(4) Two years of experience as an instructor in an accredited educational program in perfusion.

The program director may also serve as the clinical coordinator provided the qualifications of both are met.

3. Medical Advisor
a. Responsibilities
The medical advisor must participate in planning, organizing, conducting, revising, and evaluating the perfusion education program.

b. Qualifications
The medical advisor of the program must be a physician, currently licensed in the United States, holding a credential in an appropriate medical specialty.

The medical advisor should be board-certified or eligible for certification by the American Board of Thoracic Surgery or the American Board of Anesthesiology.

4. Clinical Perfusion Faculty
a. Responsibilities
The clinical instructor(s) must be knowledgeable of the program goals, clinical objectives, and clinical evaluation system. The clinical instructor(s) must provide students with appropriate and adequate clinical instruction/supervision and must evaluate student clinical competence.

During clinical instruction in which the student is operating extracorporeal circulation equipment, there must be direct one-to-one supervision by a clinical instructor. The clinical instructor and physician in charge of the procedure must be responsible for patient safety.

Sufficient time for accomplishing the clinical objectives must be provided. The clinical instructor(s) must communicate regularly with the program officials.

At least one clinical instructor must be designated as site coordinator at each clinical affiliate to facilitate communication and appropriate site orientation/training, and summary student evaluation.

b. Qualifications
(1) All clinical faculty must be knowledgeable and effective in teaching the subjects assigned.
(2) To supervise students operating extracorporeal circulation equipment, clinical instructors must be certified as perfusionists by a United States certifying body.

Certification by the American Board of Cardiovascular Perfusion satisfies the certification requirement.

5. Didactic Faculty
a. Responsibilities
Didactic faculty must be responsible for teaching each course assigned by the program director, evaluating students and reporting their progress as required by the sponsor, and cooperating with the program director in periodic review and revision of course materials.

(2) Qualifications
Didactic faculty must be individually qualified and must be effective in teaching the subject(s) assigned.
C. Curriculum
The curriculum must ensure the achievement of program goals and learning domains. Instruction must be an appropriate sequence of classroom, laboratory, and clinical activities. Instruction must be based on clearly written course syllabi that include course description, course objectives, methods of evaluation, topic outline, and competencies required for graduation.

Simulated clinical experiences should be incorporated into the curriculum.

1. AC-PE Approved Cardiovascular Perfusion Curriculum
The program must demonstrate by comparison that the curriculum offered meets or exceeds the content requirements of the latest edition of the perfusion curriculum approved by the AC-PE (see Appendix B).

2. Curriculum Requisites
The following curriculum requisites must either be met prior to the perfusion education program or be presented as course work; they must include but are not limited to college level content in the following:
 a. Anatomy and pathology
 b. Physiology
 c. Chemistry
 d. Pharmacology
 e. Mathematics
 f. Physics

 Biochemistry should be incorporated into the curriculum.

 Tests used to assess prerequisite knowledge or advanced standing should be nationally recognized and accepted.

3. Clinical Cases
Clinical case availability must be adequate to support the number of students admitted to the program. A minimum of 75 clinical cases at AC-PE approved clinical affiliates requiring cardiopulmonary bypass must be the performed by each student prior to graduation. A minimum of 10 clinical pediatric cases requiring cardiopulmonary bypass must be observed or performed prior to graduation.

There should be an equitable distribution of available clinical cases among the students. A student’s involvement in cardiopulmonary bypass should include but not be limited to the following:
 a. preoperative preparation
 b. perfusion equipment selection and assembly
 c. perfusion management and decision making

D. Resource Assessment
The program must, at least annually, assess the appropriateness and effectiveness of the resources described in these Standards. The results of resource assessment must be the basis for ongoing planning and appropriate change. An action plan must be developed when deficiencies are identified in the program resources. Implementation of the action plan must be documented and results measured by ongoing resource assessment.

IV. Student and Graduate Evaluation/Assessment

A. Student Evaluation
1. Frequency and purpose
Evaluation of students must be conducted on a recurrent basis and with sufficient frequency to provide both the students and program faculty with valid and timely indications of the students’ progress toward and achievement of the competencies and learning domains stated in the curriculum.

 The program should demonstrate appropriate strategies for communicating with each individual student his or her standing in the program. The demonstration should include a plan for routine communication, a copy of all forms used in communicating, a description of how the department and institution handles problem or failing
students, a description of the appeals process, and student evaluation of the communication process. Each student file should contain copies of all communication regarding standing.

2. Documentation
Records of student evaluations must be maintained in sufficient detail to document learning progress and achievements.

B. Outcomes
1. Outcomes Assessment
The program must periodically assess its effectiveness in achieving its stated goals and learning domains. The results of this evaluation must be reflected in the review and timely revision of the program.

Outcomes assessments must include, but are not limited to: national credentialing examination(s) performance, programmatic retention/attrition, graduate satisfaction, employer satisfaction, job (positive) placement, and programmatic summative measures, including: cardiopulmonary bypass; mechanical circulatory support; autotransfusion/blood conservation/product management; and performance of laboratory analysis of blood gases, electrolytes, hematocrit/hemoglobin. The program must meet the AC-PE outcomes assessment thresholds.

“Positive placement” means that the graduate is employed full or part-time in a related field; and/or continuing his/her education; and/or serving in the military.

2. Outcomes Reporting
The program must periodically submit to the AC-PE the program goal(s), learning domains, evaluation systems (including type, cut score, and appropriateness), outcomes, its analysis of the outcomes, and an appropriate action plan based on the analysis.

Programs not meeting the established thresholds must begin a dialogue with the AC-PE to develop an appropriate plan of action to respond to the identified shortcomings.

V. Fair Practices
A. Publications and Disclosure
1. Announcements, catalogs, publications, and advertising must accurately reflect the program offered.
2. At least the following must be made known to all applicants and students: the sponsor’s institutional and programmatic accreditation status as well as the name, mailing address, web site address, and phone number of the accrediting agencies; admissions policies and practices, including technical standards (when used); policies on advanced placement, transfer of credits, and credits for experiential learning; number of credits required for completion of the program; tuition/fees and other costs required to complete the program; policies and processes for withdrawal and for refunds of tuition/fees.
3. At least the following must be made known to all students: academic calendar, student grievance procedure, criteria for successful completion of each segment of the curriculum and for graduation, and policies and processes by which students may perform clinical work while enrolled in the program.
4. The sponsor must maintain, and provide upon request, current and consistent information about student/graduate achievement that includes the results of one or more of the outcomes assessments required in these Standards.

The sponsor should develop a suitable means of communicating to the communities of interest the achievement of students/graduates.

B. Lawful and Non-discriminatory Practices
All activities associated with the program, including student and faculty recruitment, student admission, and faculty employment practices, must be non-discriminatory and in accord with federal and state statutes, rules, and regulations. There must be a faculty grievance procedure made known to all paid faculty.

C. Safeguards
The health and safety of patients, students, and faculty associated with the educational activities of the students must be adequately safeguarded.
All activities in the program must be educational and students must not be substituted for staff.

D. **Student Records**
Satisfactory records must be maintained for student admission, advisement, counseling, and evaluation. Grades and credits for courses must be recorded on the student transcript and permanently maintained by the sponsor in a safe and accessible location.

E. **Substantive Changes**
The sponsor must report substantive change(s) as described in Appendix A to CAAHEP/AC-PE in a timely manner.

F. **Agreements**
There must be a formal affiliation agreement or memorandum of understanding between the sponsor and all other entities that participate in the education of the students describing the relationship, roles, and responsibilities of the sponsor and that entity. Clinical Affiliates must be accredited by recognized agencies or meet equivalent standards.

APPENDIX A

(This administrative Appendix will be added by CAAHEP after final approval of the Standards and Guidelines document.)
APPENDIX B

UNIT 1. BASIC SCIENCE
A. Cardiovascular Anatomy
1. Mediastinum Cardiovascular Anatomy ... 1
2. Heart ... 2
3. Cardiac Arteries, Veins, and Microcirculation ... 3
4. Conduction System ... 4
5. Major Arteries, Veins and Branches .. 5
6. Developmental and Cardiac Embryology ... 6
7. Vascular Embryology .. 7

B. Pathology and Surgical Repair
1. Adult Cardiac Valvular Pathology and Surgical Repair ... 8
2. Adult Coronary Artery Pathology ... 9
3. Perfusion Techniques for Aortic Aneurysm Dissections: Thoracic and Thoracoabdominal ... 10-11
4. Congestive Heart Failure .. 12
5. Congenital Heart Defects: Left to Right Shunts .. 13-14
6. Congenital Heart Defects: Cyanotic Anomalies .. 15-16
7. Congenital Heart Defects: Obstructive Anomalies ... 17-18
8. Congenital Heart Defects: Miscellaneous Anomalies ... 19-20

C. Physiology
1. Cardiovascular Physiology ... 21
2. Cardiovascular Hemodynamics ... 22
3. Renal Physiology .. 23
4. Ventilation, Oxygenation, Respiration ... 24-25
5. Myocardial Physiology .. 26
6. Hematology .. 27
7. Coagulation Management ... 28

D. Pharmacology
1. Pharmacodynamics and Pharmacokinetics ... 29
2. Pharmacology of Anesthetic Agents ... 30-31
3. Anti-arrhythmic Pharmacology ... 32
4. Inotropic and Vasopressor Pharmacology ... 33
5. Vasodilators .. 34
6. Pharmacological Treatment of Congestive Heart Failure (CHF) 35
7. Antimicrobial Agents/Antibiotics ... 36
8. Anticoagulants .. 37
9. Heparin Induced Thrombocytopenia (HIT) ... 38
10. Antithrombin III Deficiency .. 39
11. Chemotherapeutic, Immunosuppressive and Diabetic Agents 40

E. Physics ... 41

F. Chemistry ... 42

G. Mathematics .. 43

H. Immunology
1. Immunology of Blood Contact with Artificial Materials 44
2. Immunology of Reperfusion Injury ... 45

UNIT 2. CARDIOPULMONARY BYPASS
A. Extracorporeal Circuit Components for Cardiopulmonary Bypass
1. Perfusion Circuits ... 46
2. Tubing .. 47
3. Pumps ... 48
4. Extracorporeal Filters ... 49
5. Oxygenators ... 50
6. Heat Exchangers .. 51
7. Reservoirs ... 52
8. Hemoconcentrators/Ultrafilters/Dialysis ... 53

B. Cardiopulmonary Bypass Techniques
1. Conduct of Cardiopulmonary Bypass .. 54
2. CPB Cannulation and Monitoring ... 55
C. Adequacy of Perfusion...56

D. Myocardial Preservation
 1. Cardioplegia Administration Techniques57
 2. Cardioplegia Solutions..58-59

E. Systemic Hypothermia ..60

F. Blood Conservation Techniques
 1. Standards for Perioperative Autologous Blood Collection and Administration61
 2. Hemodilution ..62
 3. Intraoperative Autotransfusion ..63-64
 a. High Volume Autologous Platelet Concentration65
 4. Low Volume Autologous Platelet Concentration Systems66
 5. Hemoconcentration ..67
 6. Pharmacological Interventions ...68

G. Special Considerations in Perfusion
 1. Malignant Hyperthermia ..69
 2. Perfusion of the Pregnant Patient ..70
 3. Sickle Cell and Other Blood Disorders71

H. Catastrophe Management ..72

I. Adjunctive Techniques
 1. Assisted Venous Drainage ..73
 2. Selective Cerebral Perfusion ...74

J. Patient Monitoring ..75

K. Organ Transplantation
 1. Heart Transplantation; Donor Recipient Considerations76
 2. Lung and Heart-Lung Transplantation ...77
 3. Liver Transplantation – Perfusion Support78

UNIT 3. MECHANICAL ASSIST
A. Extracorporeal Life Support Techniques
 1. ECMO ...79
 2. GPS ...80

B. Intra-Aortic Balloon Pumping (IABP) ...81

C. Ventricular Assist Devices ..82

UNIT 4. PRINCIPLES OF LABORATORY ANALYSIS
A. Overview - Laboratory Analysis ..83

B. Laboratory Analysis – Special Chemistry84

C. Laboratory Analysis – Blood Chemistry85

D. Laboratory Analysis – Coagulation ...86

UNIT 5. BIOMEDICAL ENGINEERING
A. Biomedical Instrumentation ...87

B. Biophysical Transport Phenomenon ...88

C. Biomedical Electrical Safety ...89

D. Medical and Diagnostic Imaging Technology90

UNIT 6. SAFETY
A. Blood/Fluid Exposure ...91

B. Patient Safety ...92
UNIT 7. CONTINUOUS QUALITY ASSURANCE
 A. CQI for the Perfusionist ... 93

UNIT 8. ETHICS
 A. Medical Ethics .. 94

UNIT 9. HISTORY
 A. Historical Development of Extracorporeal Technology 95

UNIT 10. RESEARCH
 A. Introduction to Research Methods .. 96

UNIT 11. BUSINESS PRACTICES
 A. Business Practice Regulatory Agencies ... 97

UNIT 12. EMERGENCY PREPAREDNESS .. 98